Monitoring of Earth Orientation Variables Jim Ray Earth Orientation Department U.S. Naval Observatory #### What are Earth Orientation Parameters? - The time-varying angles which describe the rotation and wobble of the Earth as it spins in inertial space - EPOs provide the link between: - * terrestrial reference frame fixed to Earth non-inertial (rotating, etc.) - * celestial reference frame fixed to quasars inertial (non-rotating) - $\star \ \mathbf{TRF} \leftarrow \mathbf{EOPs} \rightarrow \mathbf{CRF}$ - Treated as 5 time-varying angles: - * **polar motion** x,y coordinates of instantaneous pole location on Earth's surface (in TRF) - * Universal time UT1 or, equivalently, excess length of day; angle about rotation (z) axis - * **nutation** position of pole in celestial frame ## Why do EOPs Matter? - Nearly all observations of space objects or from space platforms must be related to Earth points - \star e.g., target locations - Could use dense, global tracking networks to continuously locate satellites in TRF by geometric triangulation from the ground - * generally not practical (except for geostationary satellites) - Instead, Newton's laws of motion give accurate description of satellite dynamics using sparse observations - But physical laws only usable (simple) in inertial (non-rotating) frame - ★ otherwise, must introduce complex pseudo-forces #### How are EOPs Used? - Method to analyze Earth-based observations: - \star apply transform: **TRF** \to (EOPs) \to **CRF** - \star compute orbit in inertial frame using laws of motion - \star transform back: CRF \rightarrow (EOPs) \rightarrow TRF - Simple rotation matrix relation used: $$\mathbf{CRF} = \mathbf{P} * \mathbf{N}(t) * \mathbf{R}(t) * \mathbf{W}(t) * \mathbf{TRF}$$ where CRF = celestial (x,y,z) coordinates TRF = terrestrial (x,y,z) coordinates P = precession matrix N(t) = nutation matrix $\mathbf{R}(t) = \text{rotation (UT1) matrix}$ W(t) = wobble (polar motion) matrix and the terms N(t), R(t), and W(t) are EOPs. ### How Big are EOP Variations? - variations on all time scales, from hours upward - ★ generally, larger changes over longer time scales - Polar motion changes - ★ large annual periods (modulated) - \star ±600 mas range - \rightarrow nearly 20 meters of equatorial motion - Length of Day changes - ★ large annual periods (plus known tides) - \star ±1 millisecond (ms) range for length of day over a year - \rightarrow nearly 0.5 meter of equatorial motion - UT1 changes - \star integral of length of day changes - \star small errors in length of day can accumulate to very large UT1 errors ### POLAR MOTION FROM 1992 TO 2002 #### What is the Effect of EOP Errors? - Method to generate orbit predictions (for real-time use, e.g., broadcast GPS orbits): - * transform past tracking data (collected in TRF): $\mathbf{TRF} \to (\mathrm{EOPs}) \to \mathbf{CRF}$ - * compute orbit for observed period (in inertial frame) - * use laws of motion to **predict future orbit** (in inertial frame) - * transform back to TRF: $\mathbf{CRF} \to (\mathbf{predicted} \ \mathbf{EOPs}) \to \mathbf{TRF}$ - EOP prediction errors contribute directly to orbit rotation errors - 1 milliarcsecond (mas) = 13 cm equatorial rotation @ GPS altitude - GPS orbits show rotations up to ± 20 mas - * equivalent to 2.6 meters equatorial variation # BRD Orbit Rotations wrt IGR # BRD Orbit Rotations wrt IGR #### What Causes EOP Variations? - Nutation motion of celestial pole in CRF - * due to gravitational forces of Sun, Moon, and planets acting on non-spherical Earth - * accurately predicted by models - * prediction error <0.3 mas (<4cm @ GPS altitude) - Polar motion motion of pole in TRF - \star due to exchange of angular momentum: $\mathbf{Earth's} \ \mathbf{crust} \leftrightarrow \mathbf{atmosphere} \leftrightarrow \mathbf{oceans}$ - ★ crudely predictable - * prediction error ~0.4 mas/day (~5 cm/day @ GPS altitude) - UT1 rotation rate - \star due to exchange of angular momentum: Earth's crust \leftrightarrow atmosphere \leftrightarrow core - \star very poorly predictable - \star prediction error ~ 0.1 ms/day = ~ 1.5 mas/day (~ 20 cm/day @ GPS altitude) #### How are EOP Variations Measured? - Very long baseline interferometry (**VLBI**) applied to multi-station radio astronomy of quasars - \star measure all 5 EOP angles - ★ weekly EOPs (5 times per week UT1) - * very expensive - ★ multi-agency, multi-national effort - ★ International VLBI Service (IVS) - Satellite laser ranging (SLR) round-trip timing of laser pulses to satellites - * measures polar motion and length of day - \star daily to few-day EOPs - ⋆ very expensive - * multi-agency, multi-national effort - * International Laser Ranging Service (ILRS) - Global Positioning System (GPS) radiometric timing using global tracking network - * measures polar motion and length of day - * daily EOPs; most accurate polar motion - ★ inexpensive network and analysis - * International GPS Service (IGS) #### Where to Get Latest EOPs? - International Earth Rotation Service (IERS) - * exists to provide EOP service to user community - ★ ensures consistent, high-accuracy results - \star USNO serves as Rapid Service & Prediction Center - IERS Bulletin A (Rapid Service & Predictions) - \star prepared at USNO - \star publication of recent past EOPs - \star plus predictions up to 1 year in future - * based on multi-technique combination (VLBI, SLR, GPS) - Access EOP products at - $\star \ http://maia.usno.navy.mil/$ - \star web/ftp protocols - \star also, e-mail subscriptions available